2024年
1 Wang, Y. et al. Highly Oriented FAPbI3 via 2D Ruddlesden Popper Perovskite Template Growth. Advanced Energy Materials (2024). //doi.org/10.1002/aenm.202401721
2 Wang, H. et al. Controlled dion-jacobson low-dimensional surface phase enables highly efficient and stable perovskite solar cells. Nano Energy 128, 109875 (2024). //doi.org/10.1016/j.nanoen.2024.109875
3 Sun, H. et al. Optoelectronic synapses based on a triple cation perovskite and Al/MoO<sub>3</sub> interface for neuromorphic information processing. Nanoscale Advances 6, 559-569 (2024). //doi.org/10.1039/d3na00677h
4 Shi, Z. et al. Room Temperature Crystallized Phase‐Pure α‐FAPbI3 Perovskite with In‐Situ Grain‐Boundary Passivation. Advanced Science (2024). //doi.org/10.1002/advs.202400275
5 Liu, K. et al. Lead (Pb) Management in the Entire Life Cycle of Highly Efficient and Stable Perovskite Solar Cells. Energy & Environmental Science (2024). //doi.org/10.1039/d4ee01829j
6 Jamil, S. et al. Sb-Doped Biphasic P2/O3-Type Mn-Rich Layered Oxide Cathode Material for High-Performance Sodium-Ion Batteries. ACS Applied Materials & Interfaces 16, 14669-14679 (2024). //doi.org/10.1021/acsami.3c15667
7 He, F. et al. Hydrophobic Electron‐Transport Layer for Efficient Tin‐Based Perovskite Solar Cells. Advanced Functional Materials (2024). //doi.org/10.1002/adfm.202405611
8 Cai, Y. et al. In-plane ferroelectric-reconfigured interface towards dual-modal intelligent vision. Next Nanotechnology 5, 100052 (2024). //doi.org/10.1016/j.nxnano.2024.100052
9 Behrouznejad, F., Zhan, Y. & Taghavinia, N. UV Laser Scribing for Perovskite Solar Modules Fabrication, Pros, and Cons. IEEE Journal of Photovoltaics, 1-10 (2024). //doi.org/10.1109/jphotov.2024.3396515
10 Behrouznejad, F. et al. Modification of copper-based chalcogenide nanocrystals' interconnections for efficient hole transportation in Perovskite solar cell. Materials Research Bulletin 178, 112892 (2024). //doi.org/10.1016/j.materresbull.2024.112892
2023年
11 Zhang, X. et al. Minimizing the Interface-Driven Losses in Inverted Perovskite Solar Cells and Modules. ACS Energy Letters 8, 2532-2542 (2023). //doi.org/10.1021/acsenergylett.3c00697
12 Zhang, X. et al. Surface Modulation via Conjugated Bithiophene Ammonium Salt for Efficient Inverted Perovskite Solar Cells. ACS Applied Materials & Interfaces 15, 46803-46811 (2023). //doi.org/10.1021/acsami.3c08119
13 Xu, X. et al. Tunable Fabrication of MAPbX<sub>3</sub> Triangular‐Micro‐Wires Array for Constructing High Sensitivity Photodetector. Advanced Materials Technologies 8 (2023). //doi.org/10.1002/admt.202300946
14 Wang, Y. et al. Intermediate Phase Free α‐FAPbI<sub>3</sub> Perovskite via Green Solvent Assisted Perovskite Single Crystal Redissolution Strategy. Advanced Materials 35 (2023). //doi.org/10.1002/adma.202302298
15 Wang, H. et al. Green Solvent Polishing Enables Highly Efficient Quasi-2D Perovskite Solar Cells. ACS Applied Materials & Interfaces 15, 36447-36456 (2023). //doi.org/10.1021/acsami.3c08182
16 Tan, H., Du, L., Yang, F., Chu, W. & Zhan, Y. Two-dimensional materials in photonic integrated circuits: recent developments and future perspectives [Invited]. Chin. Opt. Lett. 21, 110007 (2023).
17 Rafique, S. et al. Ultralow Thermal Conductivity Achieved by All Carbon Nanocomposites for Thermoelectric Applications. Advanced Electronic Materials 9 (2023). //doi.org/10.1002/aelm.202300023
18 Pan, Y. et al. An Ultrasensitive Sandwiched Heterostructure Planar Photodetector with Gradient Quasi‐2D Perovskite. Advanced Electronic Materials, 2201028 (2023). //doi.org/10.1002/aelm.202201028
19 Liu, K. et al. Covalent bonding strategy to enable non-volatile organic cation perovskite for highly stable and efficient solar cells. Joule 7, 1033-1050 (2023). //doi.org/10.1016/j.joule.2023.03.019
20 Liu, K. et al. In Situ Cross‐Linking Strategy to Enable Highly Stable Perovskite Solar Cells. Small 19 (2023). //doi.org/10.1002/smll.202304189
21 Li, X. et al. Spectral response regulation strategy by downshifting materials to improve efficiency of flexible perovskite solar cells. Nano Energy 114, 108619 (2023). //doi.org/10.1016/j.nanoen.2023.108619
22 Li, T. et al. Alleviating the Crystallization Dynamics and Suppressing the Oxidation Process for Tin‐Based Perovskite Solar Cells with Fill Factors Exceeding 80 Percent. Advanced Functional Materials (2023). //doi.org/10.1002/adfm.202308457
23 jiang, C. et al. Ray theory-based compounded plane wave ultrasound imaging for aberration corrected transcranial imaging: Phantom experiments and simulations. Ultrasonics 135, 107124 (2023). //doi.org/10.1016/j.ultras.2023.107124
24 Hatamvand, M. et al. The role of different dopants of Spiro-OMeTAD hole transport material on the stability of perovskite solar cells: A mini review. Vacuum, 112076 (2023). //doi.org/10.1016/j.vacuum.2023.112076
25 Feng, J. et al. An Energy-Efficient Flexible Multi-Modal Wireless Sweat Sensing System Based on Laser Induced Graphene. Sensors 23, 4818 (2023). //doi.org/10.3390/s23104818
26 Deng, L. et al. Stabilizing Bottom Side of Perovskite via Preburying Cesium Formate toward Efficient and Stable Solar Cells. Advanced Functional Materials 33 (2023). //doi.org/10.1002/adfm.202303742
27 Cai, Y. et al. In-situ artificial retina with all-in-one reconfigurable photomemristor networks. npj Flexible Electronics 7 (2023). //doi.org/10.1038/s41528-023-00262-3
28 Cai, X. et al. Discovery of All-Inorganic Lead-Free Perovskites with High Photovoltaic Performance via Ensemble Machine Learning. Materials Horizons (2023). //doi.org/10.1039/d3mh00967j
29 Behrouznejad, F. et al. The fingerprint of charge transport mechanisms on the incident photon-to-current conversion efficiency spectra of perovskite solar cells. Solar Energy Materials and Solar Cells 253, 112234 (2023). //doi.org/10.1016/j.solmat.2023.112234
30 Alias, N. et al. Air-Processable Perovskite Solar Cells by Hexamine Molecule Phase Stabilization. ACS Omega 8, 18874-18881 (2023). //doi.org/10.1021/acsomega.3c01236
31 Ahmed, W. et al. ZnO intercalated into graphene oxide based 2-D binary composite for improved thermal properties using as a potential nanofluid. Journal of Molecular Liquids 391, 123426 (2023). //doi.org/10.1016/j.molliq.2023.123426
32 Ahmed, W. et al. Preparation, applications, stability and improved thermal characteristics of sonochemically synthesized nanosuspension using varying heat exchangers, a Review. Journal of Molecular Liquids 387, 122665 (2023). //doi.org/10.1016/j.molliq.2023.122665
2022年
33 Zhang, X. et al. An Integrated Bulk and Surface Modification Strategy for Gas‐Quenched Inverted Perovskite Solar Cells with Efficiencies Exceeding 22%. Solar RRL, 2200053 (2022). //doi.org/10.1002/solr.202200053
34 Wang, Y. et al. Stabilizing α-phase FAPbI 3 solar cells. Journal of Semiconductors 43, 040202-040202-040203 (2022).
35 Wang, H. et al. Band Alignment Boosts over 17% Efficiency Quasi-2D Perovskite Solar Cells via Bottom-Side Phase Manipulation. ACS Energy Letters 7, 3187-3196 (2022). //doi.org/10.1021/acsenergylett.2c01453
36 Usman, M. et al. Facile synthesis of ironnickelcobalt ternary oxide (FNCO) mesoporous nanowires as electrode material for supercapacitor application. Journal of Materiomics 8, 221-228 (2022).
37 Tangyao, S., Yiqiang, Z. & Lei, S. Time-resolved spectroscopy for the study of perovskite. Chinese Journal of Electronics 32, 1 (2022). //doi.org/10.23919/cje.2022.00.064
38 Song, W. et al. Critical Role of Perovskite Film Stoichiometry in Determining Solar Cell Operational Stability: a Study on the Effects of Volatile A-Cation Additives. ACS Applied Materials & Interfaces 14, 27922-27931 (2022). //doi.org/10.1021/acsami.2c05241
39 Samanta, S. et al. Deep Dive into Lattice Dynamics and Phonon Anharmonicity for Intrinsically Low Thermal Expansion Coefficient in CuS. ChemNanoMat 8 (2022). //doi.org/10.1002/cnma.202200238
40 Numan, A. et al. Advanced nanoengineered—customized point-of-care tools for prostate-specific antigen. Microchimica Acta 189 (2022). //doi.org/10.1007/s00604-021-05127-y
41 Mehmood, S. et al. in Dye-Sensitized Solar Cells 103-136 (Elsevier, 2022).
42 Liu, F. et al. Highly Efficient and Stable Self‐Powered Mixed Tin‐Lead Perovskite Photodetector Used in Remote Wearable Health Monitoring Technology. Advanced Science 10, 2205879 (2022). //doi.org/10.1002/advs.202205879
43 Liu, F. et al. New Lead-free Organic–Inorganic Hybrid Semiconductor Single Crystals for a UV–Vis–NIR Broadband Photodetector. ACS Applied Materials & Interfaces 14, 33850-33860 (2022). //doi.org/10.1021/acsami.2c08116
44 Li, X. et al. Highly efficient flexible perovskite solar cells with vacuum-assisted low-temperature annealed SnO2 electron transport layer. Journal of Energy Chemistry 67, 1-7 (2022). //doi.org/10.1016/j.jechem.2021.09.021
45 Li, C., Rafique, S. & Zhan, Y. Synergy of Block Copolymers and Perovskites: Template Growth through Self-Assembly. The Journal of Physical Chemistry Letters 13, 11610-11621 (2022). //doi.org/10.1021/acs.jpclett.2c02983
46 Khan, Q. U., Begum, N., Khan, K., Rauf, M. & Zhan, Y. Novel Porphyrin–Perylene diimide for ultrafast high-performance resistive memory devices. Organic Electronics 103, 106453 (2022).
47 Jiang, C., Liu, C., Zhan, Y. & Ta, D. The Spectrum-Beamformer for Conventional B-Mode Ultrasound Imaging System: Principle, Validation, and Robustness. Ultrasonic Imaging, 01617346221085184 (2022).
48 Deng, L. et al. Strain Release and Defect Passivation in Formamidinium-Dominated Perovskite via a Novel in-Plane Thermal Gradient Assisted Crystallization Strategy. ACS Applied Materials & Interfaces 14, 52007-52016 (2022). //doi.org/10.1021/acsami.2c16247
49 Cai, Y. et al. Molecular ferroelectric/semiconductor interfacial memristors for artificial synapses. npj Flexible Electronics 6 (2022). //doi.org/10.1038/s41528-022-00152-0
50 Cai, X. et al. Data-driven design of high-performance MASnxPb1-xI3 perovskite materials by machine learning and experimental realization. Light: Science & Applications 11 (2022). //doi.org/10.1038/s41377-022-00924-3
2021年
51 Zhang, H. et al. Highly Efficient 1D/3D Ferroelectric Perovskite Solar Cell. Advanced Functional Materials 31 (2021). //doi.org/10.1002/adfm.202100205
52 Zamanpour, F. et al. Fast Light-Cured TiO2 Layers for Low-Cost Carbon-Based Perovskite Solar Cells. ACS Applied Energy Materials 4, 7800-7810 (2021). //doi.org/10.1021/acsaem.1c01168
53 Shahid, M. et al. Platinum doped titanium dioxide nanocomposite an efficient platform as anode material for methanol oxidation. Journal of Materials Research and Technology 15, 6551-6561 (2021). //doi.org/10.1016/j.jmrt.2021.11.077
54 Sagadevan, S. et al. Functionalized graphene-based nanocomposites for smart optoelectronic applications. Nanotechnology Reviews 10, 605-635 (2021). //doi.org/10.1515/ntrev-2021-0043
55 Prathapani, S. & Zhan, Y. A Comprehensive Perspective on the Fabrication of CuGaSe2/Si Tandem Solar Cells. Energy Technology 9, 2100193 (2021). //doi.org/10.1002/ente.202100193
56 Numan, A. et al. Rationally engineered nanosensors: A novel strategy for the detection of heavy metal ions in the environment. Journal of Hazardous Materials, 124493 (2021). //doi.org/10.1016/j.jhazmat.2020.124493
57 Li, C. et al. Highly Luminescent and Patternable Block Copolymer Templated 3D Perovskite Films. Advanced Materials Technologies, 2001209 (2021). //doi.org/10.1002/admt.202001209
58 Hu, Z. et al. A hybrid self-growing polymer microtip for ultracompact and fast fiber humidity sensing. Sensors and Actuators B: Chemical 346, 130462 (2021). //doi.org/10.1016/j.snb.2021.130462
59 Ghavaminia, E. et al. Polyvinylcarbazole as an Efficient Interfacial Modifier for Low‐Cost Perovskite Solar Cells with CuInS2/Carbon Hole Collecting Electrode. Solar RRL (2021). //doi.org/10.1002/solr.202100074
60 Chen, W. et al. Improving the Efficiency of Hole-Conductor-Free Carbon-Based Planar Perovskite Solar Cells with Long-Term Stability by Using the Hydrazine Acetate Additive via the One-Step Method. ACS Applied Electronic Materials 3, 5211-5218 (2021). //doi.org/10.1021/acsaelm.1c00596
61 Cai, X. et al. Discovery of Lead‐Free Perovskites for High‐Performance Solar Cells via Machine Learning: Ultrabroadband Absorption, Low Radiative Combination, and Enhanced Thermal Conductivities. Advanced Science 9, 2103648 (2021). //doi.org/10.1002/advs.202103648
62 Begum, S. et al. Investigation of Morphology, Crystallinity, Thermal stability, Piezoelectricity and Conductivity of PVDF nanocomposites reinforced with Epoxy Functionalized MWCNTs. Composites Science and Technology, 108841 (2021). //doi.org/10.1016/j.compscitech.2021.108841
63 Alias, N. et al. Photoelectrical Dynamics Uplift in Perovskite Solar Cells by Atoms Thick 2D TiS2 Layer Passivation of TiO2 Nanograss Electron Transport Layer. ACS Applied Materials & Interfaces 13, 3051-3061 (2021). //doi.org/10.1021/acsami.0c20137
64 Ahmed, I. et al. There is plenty of room at the top: generation of hot charge carriers and their applications in perovskite and other semiconductor-based optoelectronic devices. Light: Science & Applications 10 (2021). //doi.org/10.1038/s41377-021-00609-3
2020年
65 Yu, X. X. et al. Memory Devices via Unipolar Resistive Switching in Symmetric Organic-Inorganic Perovskite Nanoscale Heterolayers. Acs Applied Nano Materials 3, 11889-11896 (2020). //doi.org/10.1021/acsanm.0c02457
66 Wang, H. et al. Extremely Low Dark Current MoS2 Photodetector via 2D Halide Perovskite as the Electron Reservoir. Advanced Optical Materials 8, 1901402 (2020). //doi.org/10.1002/adom.201901402
67 Umar, A. A. et al. Enhancing the interfacial carrier dynamic in perovskite solar cells with an ultra-thin single-crystalline nanograss-like TiO2 electron transport layer. Journal of Materials Chemistry A 8, 13820-13831 (2020). //doi.org/10.1039/d0ta03176c
68 Singh, S. et al. Low-potential immunosensor-based detection of the vascular growth factor 165 (VEGF(165)) using the nanocomposite platform of cobalt metal-organic framework. Rsc Advances 10, 27288-27296 (2020). //doi.org/10.1039/d0ra03181j
69 Singh, S. et al. A novel highly efficient and ultrasensitive electrochemical detection of toxic mercury (II) ions in canned tuna fish and tap water based on a copper metal-organic framework. J Hazard Mater 399, 123042 (2020). //doi.org/10.1016/j.jhazmat.2020.123042
70 Shi, Z. J. et al. [(C8H17)(4)N](4)[SiW12O40] (TASiW-12)-Modified SnO(2)Electron Transport Layer for Efficient and Stable Perovskite Solar Cells. Solar Rrl 4, 2000406 (2020). //doi.org/10.1002/solr.202000406
71 Shahid, M. M. et al. A glassy carbon electrode modified with tailored nanostructures of cobalt oxide for oxygen reduction reaction. International Journal of Hydrogen Energy 45, 18850-18858 (2020). //doi.org/10.1016/j.ijhydene.2020.05.122
72 Pan, Y. Y. et al. Detection range extended 2D Ruddlesden-Popper perovskite photodetectors. Journal of Materials Chemistry C 8, 3359-3366 (2020). //doi.org/10.1039/c9tc06109f
73 Numan, A. et al. Facile sonochemical synthesis of 2D porous Co3O4 nanoflake for supercapattery. Journal of Alloys and Compounds 819, 153019 (2020). //doi.org/10.1016/j.jallcom.2019.153019
74 Malek, N. A. A. et al. Enhanced Charge Transfer in Atom Thick 2H–WS2 Nanosheets Electron Transport Layers of Perovskite Solar Cells. Solar RRL 4, 2000260 (2020). //doi.org/10.1002/solr.202000260
75 Lu, H. Z. et al. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI(3) perovskite solar cells. Science 370, 74 eabb8985 (2020). //doi.org/10.1126/science.abb8985
76 Hatamvand, M. et al. Recent advances in fiber-shaped and planar-shaped textile solar cells. Nano Energy 71, 104609 (2020). //doi.org/10.1016/j.nanoen.2020.104609
77 Forouzandeh, M. et al. Effect of indium ratio in CuInxGa1-xS2/carbon hole collecting electrode for perovskite solar cells. Journal of Power Sources 475, 228658 (2020). //doi.org/10.1016/j.jpowsour.2020.228658
78 Behrouznejad, F. et al. Effective Carbon Composite Electrode for Low-Cost Perovskite Solar Cell with Inorganic CuIn0.75Ga0.25S2 Hole Transport Material. Solar RRL 4, 1900564 (2020). //doi.org/10.1002/solr.201900564
79 Abd Malek, N. A. et al. Ultra-thin MoS2 nanosheet for electron transport layer of perovskite solar cells. Optical Materials 104, 109933 (2020). //doi.org/10.1016/j.optmat.2020.109933